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In April 2016, an outbreak of gastrointestinal illness (4,136 
cases) occurred in Catalonia, Spain. We detected high lev-
els of norovirus genotypes I and II in office water coolers 
associated with the outbreak. Infectious viral titer estimates 
were 33–49 genome copies/L for genotype I and 327–660 
genome copies/L for genotype II.

During April 11–25, 2016, a total of 4,136 cases of gas-
troenteritis were reported by the Public Health Agen-

cy of Catalonia (ASPCAT; Figure, panel A). A case-patient 
was defined as an exposed person who had vomiting or di-
arrhea (3 or more loose stools within 24 hours) and >2 of 
the following: nausea, abdominal pain, or fever (≥37.8°C). 
Six patients required hospitalization. 

The epidemiologic investigation conducted by the 
ASPCAT pointed toward an association of the outbreak 
with drinking bottled spring water from office water cool-
ers; the water had been bottled at a source in Andorra (M. 
Jané-Checa and A. Martínez-Mateo, Public Health Agency 
of Catalonia, pers. comm., 2016 Sep 1). Compared with 
other modes of transmission such as food or person to per-
son, norovirus outbreaks associated with drinking water are 
rare in developed countries (1). On April 15, 2016, as a 
precautionary measure, the company producing the bottled 
water recalled >6,150 containers of water of suspected 
quality that had already been distributed to 925 companies. 
The water complied with all requirements of the European 
Commission directive on the exploitation and marketing of 
natural mineral waters (2), but these requirements do not 
include any virologic determination.

The Spanish Authority for Consumption, Food Safe-
ty, and Nutrition reported the outbreak at the national  
(http://www.aecosan.msssi.gob.es/AECOSAN/web/se-
guridad_alimentaria/ampliacion/gastroenteritis_agua_env-
asada.htm) and European (Rapid Alert System for Food 
and Feed, RASFF, expedient 2017/0469, https://webgate.

ec.europa.eu/rasff-window/portal/?event = notificationDet
ail&NOTIF_REFERENCE = 2016.0469) levels. The num-
bers of cases reported by the ASPCAT peaked on April 18 
and 21 (Figure, panel B), and the ASPCAT declared the 
outbreak over on April 25.

The Study
As part of the epidemiologic investigation of this outbreak, 
we took samples from four 19-L water coolers in 2 offices 
in the Barcelona metropolitan area, from which affected 
persons had drunk. We collected samples 1 and 2 on April 
15 from 2 water coolers in 1 office, from which 36 cases 
had been reported. A private company provided samples 
3 and 4, from 2 water coolers in a different office with 
an unknown number of cases, on April 20. We tested all 
samples immediately upon receipt at our laboratory. We 
used positively charged glass wool and polyethylene gly-
col precipitation for virus concentration. Sample volumes 
ranged from 2.0 L to 7.8 L; we reduced each sample to a 
final volume of 7 mL, as described previously (3). We ex-
tracted total RNA from 0.5 mL of the concentrates with the 
NucliSens miniMAG magnetic system (BioMérieux, Mar-
cy-l’Étoile, France) and eluted the samples in 100 µL of 
elution buffer, following the manufacturer’s specifications. 
We performed a standardized 1-step real-time TaqMan re-
verse transcription PCR (RT-qPCR; Ultrasense, Invitrogen 
Life Technologies, Barcelona, Spain), in which we used 5 
µL of extracted RNA to determine the number of genome 
copies per liter of human norovirus genogroup I (GI) and 
genogroup II (GII) (4–7). We monitored virus/nucleic acid 
extraction and enzyme efficiencies as previously described; 
we used double-stranded DNA plasmids containing the tar-
get sequences as standards (8).

We detected high RNA levels for norovirus GI and 
GII, around 103 and 104 genome copies/L, in 2 of the 4 
water cooler samples concentrated by glass wool filtration 
and polyethylene glycol precipitation (Table). Because mo-
lecular methods are unable to discern between infectious 
and noninfectious particles, we predicted the infectivity 
of norovirus in the concentrated samples by treating the 
samples with the nucleic acid intercalating dye PMA prop-
idium monoazide; (50 µmol/L) and Triton X surfactant 
(0.5%) before RT-qPCR; this enabled us to distinguish be-
tween virions with intact and altered capsids (9). Following 
this approach, estimated infectious levels in the 2 positive  
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samples were 49 and 327 genome copies/L for norovirus GI 
and 33 and 660 genome copies/L for norovirus GII (Table).

Given the large number of persons involved in the 
outbreak and the reported 50% human infectious dose for 
norovirus of 18–1,300 particles (10,11), the high genome 
copy values in the water samples were not unexpected. In 
addition, the proportion of intact (infectious) virions in the 
water samples, estimated through PMA/Triton treatment 
before RT-qPCR assays, represented 0.3%–5.6% of the 
total number of physical particles, which was enough to 
cause gastrointestinal illness (10,11).

We assayed the presence of enteroviruses, astrovirus-
es, sapoviruses, rotaviruses, adenoviruses, and hepatitis 
A virus in the 4 water samples by using commercial RT-
qPCR kits (Viasure, Certest Biotec SL, Zaragoza, Spain), 
with negative results. We attempted genotyping of noro-
viruses in samples 1 and 2 using a semi-nested RT-PCR 
protocol with specific primers for GI and GII. We per-
formed the first PCR with primers COG1F and G1SKR 
for GI and COG2F and G2SKR for GII (6,12). For the 
second PCR, we used primers G1SKF and G1SKR for 
GI and G2SKF and G2SKR for GII (12). We assigned 
genotypes based on clustering with reference strains from 
the sequence database of the European network NoroNet 
and norovirus genotyping tool (13). We detected a single 
sequence corresponding to genotype GII.4/Sydney/2012 
(GenBank accession no. KX816644) in samples 1 and 
2. Additionally, MiSeq next-generation sequence analy-
sis (Illumina, San Diego, CA) of the amplified product  

confirmed the sole presence of genotype GII.4/Syd-
ney/2012 (data not shown). 

Although some fecal samples from persons who 
worked at the office from which water samples 1 and 2 were 
obtained contained genotypes GI.2 (n = 10) and GII.17 (n 
= 11) but not GII.4/Sydney/2012, we isolated genotypes 
GII.4/Sydney/2012 (n = 1), GI.2 (n = 1), GII.17 (n = 1), and 
GII.2 (n = 1) from fecal samples from persons from a dif-
ferent office who exhibited the same gastrointestinal symp-
toms after drinking water supplied by the same company 
(data not shown). We hypothesize that the spring water 
was contaminated by all 4 strains (GI.2, GII.2, GII.4, and 
GII.17) but levels of viral contamination for each genotype 
were not homogeneous in all bottled coolers. We may have 
detected only the GII.4 genotype in water samples 1 and 
2 because of a higher concentration of this specific geno-
type or because of bias caused by the sampling, concen-
tration, and molecular detection procedures. Finally, sev-
eral reasons could explain why we did not find any GII.4/
Sydney/2012 or GII.2 genotypes among the fecal samples 
from persons from the office that provided samples 1 and 
2, including the existence of immune status among the ex-
posed persons or differences in the proportion of infectious/
physical particles between the different types.

Conclusions
We describe quantitative detection of norovirus in bottled 
water. Previously, several brands of mineral water were 
reported to contain norovirus, but the findings were later  

Figure. Waterborne norovirus 
outbreak in Catalonia, Spain, April 
15–25, 2016 (n = 4,136 cases). 
A) Geographic distribution of the 
number of cases and affected 
companies in the Catalonian Health 
regions. Inset shows location of 
region in Spain. Map outlines 
obtained from https://commons.
wikimedia.org/wiki/File:Catalonia_
location_map.svg. B) Time 
distribution of reported cases. Cases 
are displayed according to the 
dates of the press release from the 
Public Health Agency of Catalonia 
(http://premsa.gencat.cat/pres_fsvp/
AppJava/notapremsavw/292423/
ca/salut-publica-dona-tancat-brot-
gastroenteritis-transmes-consum-
daigua-envasada.do). Although the 
onset of the outbreak was on April 
11, the first report of the number 
of cases was on April 15, and the 
outbreak was declared over on April 
25 with a total of 4,136 reported 
cases, including both primary and 
secondary cases.
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attributed to laboratory contamination with control re-
agents (14,15). One limitation of our study is the low num-
ber of water samples analyzed. Four days after the onset 
of the outbreak, the company recalled all batches of water 
and water coolers of suspected quality, which hampered the 
collection of a larger number of samples for analysis.

The cause of the water contamination remains to be 
elucidated. However, the high number of affected persons 
from 381 offices that received water coolers, and the many 
different genotypes found in some patients’ fecal speci-
mens, point toward sewage pollution of the spring aquifer. 
Aquifer pollution was acknowledged by the Andorra Min-
istry of Health and Welfare, and further use of the spring 
was banned.

This large outbreak suggests that the management of 
microbial risks of commercially produced mineral waters, 
universally based solely on bacterial parameters, could 
benefit from additional analysis for relevant viral patho-
gens such as norovirus. However, the substantial costs 
incurred in developing, enhancing, and managing virus 
surveillance systems call for a balanced approach to keep 
both the cost and the time required for the analyses within 
feasibility limits.
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